bl肉yin荡np公厕肉便,含一整夜 好涨h,gogogo日本免费观看,一本色道久久综合亚洲精品

Contact us
Send E-MAIL
Home ? News ? News & Events ? SRAM Memory Basics Tutorial

SRAM Memory Basics Tutorial

2018-01-02 10:18:34

SRAM or Static Random Access Memory is a form of semiconductor memory widely used in electronics, microprocessor and general computing applications. This form of semiconductor memory gains its name from the fact that data is held in there in a static fashion, and does not need to be dynamically updated as in the case of DRAM memory. While the data in the SRAM memory does not need to be refreshed dynamically, it is still volatile, meaning that when the power is removed from the memory device, the data is not held, and will disappear.
 
 
SRAM memory basics
There are two key features to SRAM - Static random Access Memory, and these set it out against other types of memory that are available:
 
The data is held statically:   This means that the data is held in the semiconductor memory without the need to be refreshed as long as the power is applied to the memory.
 
SRAM is a form of random access memory:   A random access memory is one in which the locations in the semiconductor memory can be written to or read from in any order, regardless of the last memory location that was accessed.
The circuit for an individual SRAM memory cell comprises typically four transistors configured as two cross coupled inverters. In this format the circuit has two stable states, and these equate to the logical "0" and "1" states. In addition to the four transistors in the basic memory cell, and additional two transistors are required to control the access to the memory cell during the read and write operations. This makes a total of six transistors, making what is termed a 6T memory cell. Sometimes further transistors are used to give either 8T or 10T memory cells. These additional transistors are used for functions such as implementing additional ports in a register file, etc for the SRAM memory.
 
Although any three terminal switch device can be used in an SRAM, MOSFETs and in particular CMOS technology is normally used to ensure that very low levels of power consumption are achieved. With semiconductor memories extending to very large dimensions, each cell must achieve a very low levels of power consumption to ensure that the overall chip does not dissipate too much power.
 
 
SRAM memory cell operation
The operation of the SRAM memory cell is relatively straightforward. When the cell is selected, the value to be written is stored in the cross-coupled flip-flops. The cells are arranged in a matrix, with each cell individually addressable. Most SRAM memories select an entire row of cells at a time, and read out the contents of all the cells in the row along the column lines.
 
While it is not necessary to have two bit lines, using the signal and its inverse, this is normal practice which improves the noise margins and improves the data integrity. The two bit lines are passed to two input ports on a comparator to enable the advantages of the differential data mode to be accessed, and the small voltage swings that are present can be more accurately detected.
 
Access to the SRAM memory cell is enabled by the Word Line. This controls the two access control transistors which control whether the cell should be connected to the bit lines. These two lines are used to transfer data for both read and write operations.
 
SRAM memory applications
There are many different types of semiconductor memory that are available these days. Choices need to be made regarding the correct memory type for a given application. Possibly two of the most widely used types are DRAM and SRAM memory, both of which are used in processor and computer scenarios. Of these two SRAM is a little more expensive than DRAM. However SRAM is faster and consumes less power especially when idle. In addition to this SRAM memory is easier to control than DRAM as the refresh cycles do not need to be taken into account, and in addition to this the way SRAM can be accessed is more exactly random access. A further advantage if SRAM is that it is more dense than DRAM.
 
As a result of these parameters, SRAM memory is used where speed or low power are considerations. Its higher density and less complicated structure also lend it to use in semiconductor memory scenarios where high capacity memory is used, as in the case of the working memory within computers.
 
Open
性一交一乱一乱一视频| 晚上睡不着看点害羞的东西| 粉嫩av久久一区二区三区| 亚洲人成网站999久久久综合| 小太正裸体脱裤子无遮挡| 免费男女囗交视频在线观看| 中英文字幕是不是乱码| 欧美性色黄大片a级毛片视频| 最近免费韩国电影高清版无吗| 久久热精品视频| 人妻精品久久久久中文字幕69| 久久久久亚洲av成人人电影| 欧美极品jizzhd欧美| 国产精品毛片va一区二区三区| 日日麻批免费40分钟无码 | 涩涩av视频一区二区三区| 学长惩罚我下面放震蛋上课| www.五月天| 男男互攻互受h啪肉np文| japanesexxx护士老师| 你懂的电影| 国产中年熟女高潮大集合| 亚洲国产日韩a在线欧美2020| 精品无码三级在线观看视频| 性vodafonewifi| 日韩精品一区| 图片 小说 校园 激情 都市| 国产成人av无码一二三区| 杨思敏1一5集未删减| 国产强伦姧人妻毛片| 丰满少妇a级毛片露出偷拍| 国产精品高潮呻吟av久久96| 娇小白人女vs巨大黑迪克| 国产娇小粉嫩学生免费网站| 农村艳妇疯狂做爰| 中国白嫩丰满人妻videos| 人妻出轨和黑人疯狂做国产人| 精品人妻无码一区二区三区牛牛 | 国产人妻无码一区二区三区不卡| 清冷校草受灌满哭求饶bl| 香港a片|